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ABSTRACT Recent experimental data on the equilibrium
binding of myosin subfragment 1 (S-1) to regulated actin fila-
ments in the presence and in the absence of Ca2+ are analyzed
by using a linear Ising model. In the model, each tropomy-
osin-troponin unit (including seven sites on the actin filament)
can be in one of two possible states, which have different in-
trinsic free energies and different binding constants for S-i.
Bound S-1 molecules do not interact with each other. There are
nearest-neighbor (pair) interactions between these units that
depend on the state of each member of the pair and on the
number of Ca2+ bound to one member of the pair. There are two
sources of positive cooperativity in this system: the fact that
seven actin sites change state together as part of a single unit;
and the existence of attractive nearest-neighbor interactions
between units. Parameters in the model are evaluated by fitting
the data, both in the presence and in the absence of Ca2+. Sev-
eral extensions of this model are discussed.

In a recent paper, Greene and Eisenberg (1) presented exper-
imental data on the equilibrium binding of the myosin-sub-
fragment-l-ADP complex (hereafter simply referred to as S-1,
for brevity) to the troponin-tropomyosin-F-actin complex
(regulated F-actin), in the presence and in the absence of Ca2+.
The binding isotherms show interesting cooperativity (the data
are included in Fig. 2, below). A tentative interpretation and
analysis of the data were given (1) based on a simple model (ref.
2, equations 10-12a with T = 0; ref. 3, equations 7-70 and 7-71
with r = 0) that does not include nearest-neighbor cooperativity
in a quantitative way (see the discussion of Eqs. 22-25, below).
Essentially the same model (in the T = 0 case), with equivalent
equations, was used later by Monod et al. (4) to account for the
allosteric behavior of regulatory proteins. It is the purpose of
the present paper to reinterpret the same data in terms of a
more refined model that includes nearest-neighbor interactions
between troponin-tropomyosin units on the F-actin.
We are extending the approach of the present paper to the

in vitro and in vivo steady-state ATPase activity of regulated
actomysin; this steady-state system serves as a good illustration
of recent general theoretical studies (5-9) on the effect of
nearest-neighbor interactions on steady-state enzyme be-
havior.

THE ASSUMED MODEL AND ITS ANALYSIS
We consider a very long actin filament saturated with tro-
ponin-tropomyosin, as indicated schematically in Fig. lb. We
are interested in the equilibrium binding of S-1 and of Ca2+
(Fig. la) as influenced by each other and by tropomyosin (the
troponin is now always understood to be included). Each tro-
pomyosin unit, including seven actin sites for S-1 binding, can
be in one of two states: state 1, with "weak" binding (constant
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FIG. 1. (a) Schematic representation of the two states of the

tropomyosin-troponin unit (including seven actin sites). Each tro-
ponin has two "regulatory" sites for Ca2+. (b) Illustration of the four
types of nearest-neighbor pairs in a sequence of units.

K1) of S-I on each of the seven actin sites; and state 2 with
"strong" binding (constant K2) of S-1. The bound S-1 molecules
do not interact with each other. The intrinsic equilibrium
constant for 2 >± 1 in a hypothetical isolated tropomyosin unit,
with no tropomyosin neighbors and with no bound S-I or Ca ,
is L, which favors state 1 (weak) over state 2 (strong) (L > 1).
Each troponin has two equivalent binding sites for Ca2+ (the
regulatory sites), with intrinsic binding constants Ka and Kb (in
states 1 and 2, respectively). The interactions between near-
est-neighbor tropomyosin molecules are of types 11, 12, 21, and
22 (Fig. lb). These boundary interactions are modulated by the
extent of Ca2+ binding (0, 1, or 2) on the two Ca2+ sites of the
right-hand member (Fig. lb) of each nearest-neighbor pair
(because of proximity of the right-hand troponin to the pair
boundary).

State 1 is favored at low S-1 concentrations (L > 1). But state
2 dominates at high S-1 concentrations because K2 >> KI. The
transition from state 1 to state 2 is cooperative for two reasons:
because seven actin sites in a unit change state as a group; and,
more importantly, because of the nearest-neighbor interactions
between units.
The above describes the model qualitatively. This is an es-

Abbreviations: HMM, heavy meromyosin; S-1, subfragment 1 of heavy
meromyosin; EGTA, ethylene glycol bis(f3-aminoethyl ether)-
N,N,N',N'-tetraacetic acid.
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sentially infinite one-dimensional Ising problem, with com-
plications owing to S-1 and Ca2+ binding, which can be solved
easily and exactly by the matrix method (10-12). Closely related
problems, with a ligand-shifted equilibrium and cooperativity,
have been treated elsewhere (2, 6). Two generalizations of the
above model are discussed in later sections: (i) the extent of Ca2+
binding also modulates K, and K2; and (ii) heavy meromyosin
(HMM), two-headed binding only, is the ligand in place of S-1.
A third possible generalization, which we do not include here,
is to allow variable rather than saturated tropomyosin binding.
Other generalizations currently being studied are a continuum
of states for each unit and a relaxation of the seven-sites-as-a-
unit assumption.

In applying the matrix method (10-12) to this problem, the
2 X 2 matrix is

[1]62Y11 I2Y12J
W4221 WM22

The rows here refer to states 1 and 2 of the kth tropomyosin in
the chain and the columns refer to states 1 and 2 of the k + ith
tropomyosin. Also, in Eq. 1,

Yll xli + 2KaPYii + Kap2z,
Y12 X12 + 2KbPY12 + K9P2Z 2

Y2l X21 + 2KaPY21 + KaP2Z21,
Y22 X22 + 2Kbpy22 + K9p2z22 [2]

41j L(1 + Kl7 62 = (1 + K2c)7, [3]
where c is the concentration of free S-1, p is the concentration
of free Ca2+, and xjj, yijq are nearest-neighbor tropomyosin
interaction parameters. For example, X21 - e-W21/kT, where
W21 is the 21 interaction free energy with no Ca2+ bound on the
right-hand member (in state 1) of the pair, and Y21, Z21 are
corresponding parameters for a 21 pair with one and two Ca2+
bound, respectively. Incidentally, if two bound Ca2+ interact
with each other, this effect can be included in the zq. All de-
grees of S-I binding are automatically taken care of by 4j and
62 (3); all factors in Eq. 1 have the form of subsystem grand
partition functions (3). The appropriateness of Eq. 1 can be
verified by starting with the equivalent but more detailed 6 X
6 matrix (11, 12) for the six substates 1, 2 (tropo) X 0, 1, 2
(Ca2+):

61xii

(l2p2X 1
24iKaPi
62X21
242Kbpx21

20,KapYjj
tjK2p2yI

62Y21
22KbpY21
42KbP Y2

1z11
24iKaPz11
(l2p2Z 1

42Z21
22Kbpz21
42bPZl

Again, the rows refer to subunit k and the columns, to k + 1.
The order of states in both cases is 1(0, 1, 2), 2(0, 1, 2). Both S-1
and Ca2+ binding factors are assigned to k.

Let ym be the larger eigenvalue of the 2 X 2 matrix in Eq.
1, let 0 S 0 < 1 be the fraction of actin sites occupied by S-1
molecules, and let 0 < a < 2 be the mean number of Ca2+
bound per tropomyosin. Then (3, 11, 12)

70 = oln'ym/alnc, a = alnym/alnp [4]

O= P101 + P202

a = Piiffl + pl20f12 + P21C21 + P22022,
[7]

[8]
where pi is the fraction of tropomyosin units in state 1, 01 is the
fraction of state 1 actin sites occupied by S-1, O12 is the mean
number of Ca2+ bound at a 12 boundary (right-hand tro-
pomyosin, in state 2), P12 is the fraction of all nearest-neighbor
pairs that are of type 12, etc. Conservation relationships are

P1 + P2 = 1, P12 = P21, P11 + P22 + 2p12 = 1

PI = P11 + P12, P2 = P22 + P12.
Explicit expressions (6) are

Oj = Kic/(l + Kjc) (i = 1,2)
ijj = olnYqj/Olnp (i,j = 1,2)

Uli = 2(Kapyii + K p2z,,)/Yll, etc.

P2 = 2aY-l/ (l -a + A/-)
PIu = (1-a + V/v(1 + a + VI-)

P12 = P21 = 2aY-'/V(l + a + \/7),

[9]

[10]

[11]
[12]

[13]
[14]

[15]

where

a = a2/al, [(1 - a)2 + 4aY-1]1/2. [16]
Y > 1 introduces positive cooperativity beyond the seven-
actin-site effect (Eq. 3). The midpoint of the transition between
states 1 and 2 (P2 = 1/2) occurs when a = 1 (Eq. 12) for any Y.
We cannot expect the usual symmetry of binding isotherm
curves in simple Ising models (3) because here K, 5 K2 and Ka
p Kb.
The physical significance of

a a2/a, = (1 + K2c)7Y22(p)/L(1 + Kc)7Y,,(p) [17]
is that this is the equilibrium constant, per tropomyosin unit,
for the transition 1 ; 2 between a filament with all units in state
1 and a filament with all units in state 2, at arbitrary concen-
trations of S-1 (c) and Ca2+ (p). L > 1 favors state 1; large c
favors state 2 (K2 >> KI); p affects a by altering both the extent
of Ca2+ binding and the effective nearest-neighbor interaction
between 11 and 22 pairs in the two filaments (see Eqs. 2).

61X12 41Y12 41Z12
24iKaPX12 24iKaPY12 241KaPZi12
(,K2p2X 12 (,K2p2y 12 (,K2p2Zl
42X22 62Y22 42Z22
242KbpX22 262KbpY22 262KbpZ22/

2p2 ~~~2Kp2y22262KbP X22 62Kbp Y22 2KbP 22/

If we examine an S-shaped experimental 0(c) (S-1 binding)
curve, at fixed p, the point at which a = 1, P2 = 1/2 occurs can
be located approximately at the inflection in the curve. Let 0'
and c' be the coordinates of this point. Because of the steepness
of the experimental curve, c' can be estimated relatively ac-
curately. If K, and K2 are known, in view of Eqs. 7 (P2 = 1/2)
and 1Oa, 0' can be calculated from

20' = [Klc'/(l + Klc')] + [K2c'/(1 + K2c')]. [18]
2Tm = a, + a2 + [(a, - a2)2 + 4ala2Y-']1/2, [5]

where
al = (,Yuj, a2 =2Y22, Y(p) =YllY22/Yl2Y2l. [6]

We find from Eqs. 4 and 5, for 0 and a as functions of c and

This value may then be checked against the experimental curve
(inflection region) for self-consistency. If necessary, both c' and
0' can be adjusted to achieve acceptable values.
The value of c' (above), together with K1 and K2, also can

be used to calculate a value for the important parameter (see
below) L'(p) = LY,,(p)/Y22(p), from Eq. 17 (with a = 1):

Biochemistry: Hill et al.
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L'(p) LYii(p)/Y22(p) = (1 + K2c')7/(1 + Kic'Y'. [19]
When K2 >> K1, c' is given approximately by (L"1/7 - 1)/K2.
The above procedure (c', 0', L') is used in the next section.
Whereas L (see above) is the equilibrium constant for 2 =

1 in isolated tropomyosin units, L'(p) refers, per tropomyosin
unit, to the process all-2 filament >± all- 1 filament, with Ca2+
at p, but in the absence of S-1. This follows from the fact that,
in Eq. 17, L' = 1/a if c = 0. At low or high Ca2 , we have the
special cases

L'(0) = Lxll/x22 (p 0); L'(o) = LK2zuu/Kiz22 (p co).
[20]

When c is very large, because K2 >> K1, in effect a -o and
P2 - 1 (all state 2) in Eq. 12. Thus, 0 -8 02 (which allows
evaluation of K2-see below). Also, p22 - 1 and a -- a22. On
the other hand, at c = 0, a = 1IL' is small but not zero and P2
is also small (largely state 1). From Eq. 12, when a and a/Y are
small (recall that Y > 1 for positive cooperativity),

P2 = (a/Y)[1 + 2a - 3(a/Y) + .. . ]. [21]
At c = 0 (S-1 absent), we put a = I/L' in this equation (p is ar-
bitrary). Then P2 _ 1/L'Y is a useful first approximation.

Special Case: No Interactions. In this case xq = Yij = z=
1. Note, in Eqs. 2, that Y = 1 in this case but the separate YJ $
1 (unless p = 0). Then we find, as expected (2, 3),

O= P1O1 + P202, -= Pl~rl + P2U2 [22]
p= 1/(1 + a), P2 a/(l + a) [23]

2Kap/(1 + Kap), a2 2Kbp/(1 + Kbp), [24]
where

a = (1 + K2c)7(1 + Kbp)2/L(1 + KIc)7(l + Kap)2, [25]

and 01 and 02 are given by Eq. 10. This is a generalization of
refs. 2 and 3 to include a second ligand (Ca2+).

In the previous paper (1), Eq. 22a (without the Ca2+ factors
in Eq. 25) was applied to the experimental data. The exponent
7 in Eq. 25 would have to be several times larger than 7 in order
to achieve a reasonable fit of the ethylene glycol bis(,B-ami-
noethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (p = 0) data.
Eq. 22a refers to a system with no neighbor interactions. The
physical significance of increasing the exponent 7 in this way
is that one is simulating, roughly, the actual attractive neighbor
interactions by artificially forcing units to aggregate and to
change state (1 ;=± 2) in small groups-but otherwise leaving
neighbor interactions out of the model.

APPLICATION TO EXPERIMENTAL DATA
Experimental data are available (1) for 0(c), the S-1 binding
isotherm, at, effectively, Ca2+ concentrations p = 0 and p = o
(actually, 1 mM EGTA and 0.5 mM CaCd2). The experimental
points are shown in Fig. 2. Our primary objective in this section
is to attempt to fit these data with the above equations.
From six experimental points for both p = 0 and p = o at c

> 1.8 ,uM, assuming 0 = 02 in this region, we calculate the av-
erage value K2 = 7.1 X 105 M-'. The much smaller K1 value
presents more difficulty; we use K1 = 3 X 10P M-1. A smaller
K1, even K1 = 0, has little effect on our fitting of the data. From
the inflection in the p = 0 points, we estimate c' = 1.15 ,uM. Eq.
18 then gives 0' = 0.226 which, as can be seen from the figure,
is certainly consistent with the data. We then find, from Eqs.
19 and 20, L'(0) = 63.7. Turning to the p = o points in Fig. 2,
we estimate c' = 0.46 ,M. Then, from Eq. 18, ' = 0.124, which
is again clearly consistent with the data. Finally, from Eqs. 19

and 20, L'(Oo) = 7.16. The ratio of these two L' values, for use
below, is

L'(0)/L'(co) = Kgxllz22/K2x22z1 = 8.90. [26]
The larger L' value (favoring state 1) in the absence of Ca2+
requires a larger value of c' (S-1) in order to induce the 1 , 2
transition, as is apparent in Fig. 2.
The above considerations are independent of the interaction

parameter, Y. Of course Y is a function of p (Eqs. 2 and 6) so
we are concerned here with two values, Y(0) and Y(o). In either
case, Y can be determined (approximately) by adjusting its
value until the theoretical curve 0(c) appears to have the same
slope as the experimental points in the neighborhood of P2 =
1/2 (i.e., at 0', c'). In the p = 0 case,

a = (1 + K2c)7/(1 + Kc)7L'(0), Y(0) = X11X22/X12X21. [27]
If we assign a value to Y(0) we have available (see above) all the
parameters in Eqs. 27 needed in order to calculate 0(c) from
Eqs. 7 and 12. It is found that 0(c) with Y(0) = 20 reproduces
the experimental slope at 0', c'; it also fits the remainder of the
p =0 points rather well. This is the lower solid-line curve in Fig.
2. The four points below the curve, near c = 1 MM, are pre-
sumed to represent metastable rather than equilibrium be-
havior. Similarly, in the p = o case,
a = (1 + K2c)7/(1 + KIc)7L'(oo), Y(o) = Z11Z22/Z12Z21. [28]
Again we have values for the parameters here, except Y(co).
Proceeding as above, we obtain the upper solid-line curve in
Fig. 2, with Y(-=) = 4. Note that there is stronger cooperativity
in the absence of Ca2+ (p = 0).

Incidentally, the energetic significance of Y(0) = 20, for
example, is the following. Since xjj = e w@/kT (see above), Y(0)
= e w/kT, where

W -W1 + W22 - W12 - W21- [29]
This is the free energy change for the rearrangement of two
nearest-neighbor pairs, in the absence of Ca2+, without any 1

2 conversion:

12+21 -11 +22. [30]
If wII or w22 or both are negative, or if W12 or W21 or both are
positive, or a combination of these, w will be negative and Y(0)
> 1 (positive cooperativity), as in the above calculation. With
e w/kT = 20, w/kT = -3.0; with e-w/kT = 4, w/kT =
-1.4.
The dotted curves in Fig. 2 show the calculated P2(C) in the

two cases above (p = 0, o); this is the predicted fraction of
tropomyosin units in state 2, as a function of c. At c = 0, the
values are P2 = 0.00081 for p = 0 and P2 = 0.041 for p = o.
These same values follow from Eq. 21.

Intermediate Ca2+ Concentrations. Experiments are not
yet available with finite Ca2+ concentrations, but we can use
the above parameters (with some further assumptions) to make
illustrative theoretical calculations for such cases.
What values should be used for the yqj? If we assume, as

seems reasonable in the absence of other information, that one
bound Ca2+ has an effect on nearest-neighbor interactions that
is intermediate between that of no bound Ca2+ (Xtj) and that
of two bound Ca2+ (ZqJ), then we may write y0j = (xqzq)1/2. We
use this relationship below. Two other (extreme) choices, not
used here, are yjj = xjj (the first bound Ca2+ has no effect on
interactions) and Yij = Zjj (one bound Ca2+ has the same effect
as two bound Ca2+).
With the above "intermediate" assumption about Y.j, Yu1 in

Eq. 3 and 1I in Eq. 11 become

Y11 = xj[1 + Ka(Zi/Xii)"/2p]2 [31]

3188 Biochemistry: Hill et al.
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FIG. 2. The upper solid curve, 0(c) (S-i binding), through experimental points 0, is the theoretical curve at high Ca2+. The lower solid curve
with experimental points 0, is the corresponding low Ca2+ curve (EGTA, p - 0). The two dotted curves give the theoretical P2(c) behavior in
the two cases. The dashed @(c) curve has been calculated for p = 0.15 uM.

all = 2Ka(Zll/Xll)l"2p/[j + Ka(Zii/Xll)112p], [32]
with similar expressions for the other YIf and as>. The aOq are
all simple Langmuir binding isotherms. If the actin binding sites
are saturated with S-I (c a- co), p22 - 1 and the Ca2+ binding
isotherm is a = a22, with an effective binding constant of
Kb(Z22/x22)1/2. From the upper experimental curve in figure
2 of Bremel and Weber (13), which is very close to the Lang-
muir form, we estimate the above binding constant to be 7.9
X 106 M-1. This value and Eq. 26 then determine Ka(Zll/
X,1)'/2 (for all) to be 2.65 X 106 M-1, which is smaller by a
factor of VW8i9 = 2.98. [Incidentally, from the lower Bremel
and Weber curve, we estimate the latter (a,1) binding constant
to be 1.5 X 106 M-1.]
We also need, in order to make calculations, Kb(z12/X12)'/2

and Ka(Z21/X2i)112. We assume (out of ignorance) that the ratio
of these two constants is also 2.98. Their product is easily seen
to be

7.9 X 106 X 2.65 X 106Y(0)1/2Y(oo)-1/2 = 4.68 X 1013 M-2.
Thus we find

Kb(Zl2/X12)1/2 = 1.18 X 107 M-1, Ka(Z21/X2l)1/2
= 3.96X 106 M-1.

We now have all the parameters needed for our sample
calculations. The dashed curve in Fig. 2 shows 0(c) (S-1 binding)
at a fixed free Ca2+ concentration of p = 0.15 quM. The value
of Y (a constant) on this curve is 9.55. Also, along this curve, a
(Ca2+ binding) is 0.57 at c = 0, 0.82 at c = 0.8 MM, and 1.08 at
c = O.

Although the equivalent experiment would be difficult, the
central solid curve in Fig. 3 shows a(p) (Ca2+ binding) with free
S-I held constant at c = 0.8juM (note the arrow in Fig. 2). Un-
like Fig. 2, the cooperativity is not evident. Above this curve

is the curve for a(p) when c = o (i.e., a = a22), and below it is
the curve for v(p) when c = 0 (close to a = all). The dashed
curve in Fig. 3 gives 0 (S-i binding) as a function of p (Ca2+)
in the c = 0.8 ,M case.

CA2+ MODULATION OF S-1 BINDING
CONSTANTS

So far we have assumed that K1 and K2 (for S-1 binding) are
independent of the number of Ca2+ bound on a given tro-

a

1.0

0

0.2 0.4 0.6 0.8 1.0
p,gM

FIG. 3. The center solid curve is the calculated a(p) (Ca2+
binding) with c = 0.8 MM (note the arrow in Fig. 2); the upper and
lower solid curves give a(p) for c = - and c = 0, respectively. The
dashed curve (right-hand scale) gives 0(p) (S-1 binding) in the c = 0.8
,gM case.
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pomyosin unit. The theory can still be carried out exactly with
this restriction removed. We summarize the results here, in case
they turn out to be useful in the future. We actually began this
analysis with the appropriate (see below) 6 X 6 matrix of the
type shown above, but we present the corresponding 2 X 2
matrix below for brevity.
Ki (and similarly for K2) is now replaced by three constants,

K10, K11, and K12, where 0, 1, 2 refer to the number of Ca2+
bound to a state 1 tropomyosin unit. We then introduce the
grant partition functions

t1. = L(1 + Klnc)7, 2n = (1 + K2nc)7 (n = 0,1,2) [33]
al = Alx11 + 2KaP6iiYii + Kap2 12z11 [34]
a2 = 42OX22 + 2KbpV2y1a + Kgp2 Z22

al2 = 620X12 + 2KbpO21y12 + Kgp2g212[35z
a2l = 6OX21 + 2KaptiiY2l + K p2i2z2 [5

The fraction of actin sites occupied by S-1, on tropomyosin units
in state j and with n Ca2+ bound is, from Eq. 33,

Ojn = Kpnc/(l + Kjnc) (j = 1,2; n = 0,1,2). [36]
Let O3t (i,j = 1,2) be the average value of 0 n on the second
member (j) of a tropomyosin lj pair. Then it follows from Eqs.
34 and 35 that

011 = (41oxj1Ojo + 2KaPlIiY11011 + Ka242z11612)/a,

22= (6OX22020 + 2KbPV21Y2221 + Kgp242z2222)/a2
012 = (620Xl2020 +)/al2, 021 = (41oX21O10 +)/a2l, [37]

where the omitted terms in the last line are obvious.
The 2 X 2 matrix for this problem is (compare Eq. 1)

(a, a12) [38]
a21 a2

(In the 6 X 6 matrix above, 4l and 42 in the six rows are replaced
by 4io, 1, 612, 620, 21, 422, respectively.) Eqs. 4, 5, and 12-16
all apply here but with Y ala2/al2a2l. The expression for 0
is found to be

0 = P11011 + P22022 + P12(012 + 021), [39]

while Eq. 8 gives a, but with

al = Olnal/olnp = 2(Kapllyll + Kap2 12z,1)/al, etc. [40]
Whereas Eqs. 37 and 40 average over n (Ca2+) for a given kind

of tropomyosin pair, Eqs. 8 and 39 average further over the
different pair types.

This model, and the simpler one above, both illustrate the
great usefulness of and formal simplicity achieved by the in-
troduction of subsystem grand partition functions (3), as in Eqs.
2, 3, and 33-35.

APPROXIMATE TREATMENT OF HMM
BINDING

Returning now to the original model, suppose we are interested
in two-headed HMM binding on actin (with no interactions
between neighboring HMM molecules) instead of S-I binding.
This problem is difficult to treat exactly because of the possi-
bility ofHMM molecules binding at a tropomyosin 12 or 21 pair
boundary, with one head attached to an actin site on either side
of the boundary. However, an approximation can be obtained
by applying functions derived for an infinite array of sites (11,
12) to the seven-site units. Thus, in place of Eqs. 3, we write (11,
12)

4j = L{[1 + (1 + 4Kc)1/2]/217
6 = {[1 + (1 + 4K2c)1/2]/2F7,

and, in place of Eqs. 10,

[41]

Ot = 4Kjc/[1 + (1 + 4Kic)1/2](1 + 4Kjc)1/2 (i = 1,2). [42]
Here, K1, K2, and c all refer to HMM rather than to S-1. No
other changes are necessary. T. Tsuchiya and one of us (T.L.H.)
will report on the exact solution to this problem.
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